A chord is a segment whose endpoints are on a circle.

Congruent Chords

Theorem 10-3 and the Converse

Theorem

If two chords in a circle or in congruent circles are congruent, then their central angles are congruent.

Converse

If two central angles in a circle or in congruent circles are congruent, then their chords are congruent.

PROOF: SEE EXERCISES 12 AND 13.

If... $\overline{MN} \cong \overline{PQ}$ Then... $\angle MTN \cong \angle PTQ$

If... $\angle MTN \cong \angle PTQ$ Then... $\overline{MN} \cong \overline{PQ}$

Congruent Chords continuted

Theorem 10-4 and the Converse

Theorem

If two arcs in a circle or in congruent circles are congruent, then their chords are congruent.

Converse

If two chords in a circle or in congruent circles are congruent, then their arcs are congruent.

PROOF: SEE EXAMPLE 2 AND EXAMPLE 2 TRY IT.

If...
$$\widehat{MN} \cong \widehat{PQ}$$

Then... $\widehat{MN} \cong \widehat{PQ}$

If...
$$\overline{MN} \cong \overline{PQ}$$

Then... $\widehat{MN} \cong \widehat{PQ}$

Theorem

If chords are equidistant from the center of a circle or the centers of congruent circles, then they are congruent.

If... $\overline{SE} \cong \overline{SF}$,

Then... $\overline{AB} \cong \overline{CD}$

Converse

If chords in a circle or in congruent circles are congruent, then they are equidistant from the center or centers.

If... $\overline{AB} \cong \overline{CD}$,

Then... $\overline{SE} \cong \overline{SF}$

Given the figure at the right.

Estimate the midpoint M on segment \overline{AB} and label that point.

Draw a line through O and M so that $\overline{OM} \perp \overline{AB}$.

What Three things happen?

- · Radius/Diameter Bisect Chord AM = BM
- · Radius/Dinmeter Bicect interested Arc AN = BN
- · Radius/Diameter Bisect Central L. LAOM= LBOM

Suppose that a given circle has a radius of 6 inches.

What is the length of a chord that has a central angle of 115°?

$$\sin 57.5 = \frac{x}{6}$$

 $x = 6 \sin 57.5$ AB=10.12"
= 5.06

What is the measure of the arc of a chord that is 8 inches long? What is the perpendicular distance from the center of the circle to the chord?

$$d^{2}+4^{2}=6^{2}$$

$$d^{2}+10=34$$

$$d^{2}=20$$

$$d=\sqrt{20}=2\sqrt{5}\approx 4.47$$

The perpendicular distance from the center of the circle to a chord is 4 inches. What is the length of the chord? What is the measure of its central angle?

A \bigcirc \sim $4\sqrt{5}$

mcAOB = 96.38°

Given $\widehat{RS} \cong \widehat{UT}$, how can you find UT?

$$x^{2} + 4^{2} = 5.5^{2}$$

 $x^{2} + 16 = 30.25$
 $x^{2} = 14.25$
 $x = 3.77$

UT= 7.54

5. In
$$\bigcirc P$$
, $\widehat{mAB} = 43$, and $AC = DF$. Find DF .

Enter your answer

6. In
$$\bigcirc P$$
, $\widehat{mAB} = 43$, and $AC = DF$. Find \widehat{mAC} .

7. In
$$\bigcirc P$$
, $\widehat{mAB} = 43$, and $AC = DF$. Find FH .

Enter your answer.

8. In
$$\bigcirc P$$
, $\widehat{mAB} = 43$, and $AC = DF$. Find \widehat{mDE} .

9. In
$$\bigcirc P$$
, $\widehat{mAB} = 43$, and $AC = DF$. Find AC .

Enter your answer

10. In
$$\odot P$$
, $\widehat{mAB} = 43$, and $AC = DF$. Find \widehat{mDF} .

